

Industrializing Technology Solutions for Aluminium Reduction Lines: A Future-Ready Approach

Lucas S Oldfield¹ and Mike Pearman²

1, 2. Software Engineers

Rio Tinto Aluminium, Brisbane, Australia

Corresponding author: lucas.oldfield@riotinto.com

<https://doi.org/10.71659/icsoba2025-al025>

Abstract

DOWNLOAD
FULL PAPER

Implementing digital solutions in aluminum reduction lines is fraught with challenges stemming from extreme production conditions and intricate manual processes. Temperatures exceeding 900 °C, magnetic fields from currents over 100 kA, and pervasive dust complicate measurement device selection and integration, often requiring expensive engineering to align with recording systems. Manual tasks—measuring, interpreting for recording, and accurate data entry—demand rigorous training and validation, with errors risking disruptive process interventions. Transitioning from "paper and pencil" to digital systems is hindered by environmental stressors and device compatibility issues in such harsh settings. This paper proposes a hybrid solution: customized analog measurement devices, engineered for resilience and equipped with industry-standard Bluetooth LE, paired with an HTML5 web application. This approach ensures reliable data capture in adverse conditions, seamless real-time integration across devices, and reduced operator error, offering a robust, scalable path to digitize production while addressing adoption complexities.

Keywords: Measurement quality, Anode current density, Electrolyte temperature, Metal depth.

1. Introduction

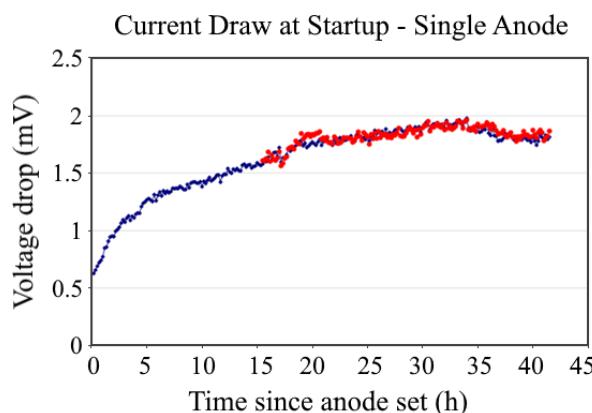
Aluminum smelters operate under extreme conditions, including radiant heat sources from molten material temperatures above 900 °C, magnetic fields from riser and bus-bar currents exceeding 100 kA, and pervasive dust, which pose significant challenges to measurement processes. Manual methods, such as multimeter readings and paper-based recording, are susceptible to human error and lack robust validation, risking costly process disruptions. Transitioning to automated, algorithm driven systems can enhance data quality and operational efficiency, but it requires addressing technical difficulties in device durability, data integration, and long-term support. This paper outlines a framework for digitizing manual measurement processes, focusing on anode current density, bath dip, and bath temperature measurements.

2. Measurement Challenges in Aluminium Reduction Cells

Manual measurement processes in aluminium reduction cells are critical for process control but face significant limitations. The following subsections detail challenges and proposed solutions for three key measurements

2.1 Anode Current Density Measurement

Effective cell control hinges on monitoring anode current distribution, as non-uniform distributions can signal issues such as cracks, spikes, or inaccuracies in anode positioning. Traditional manual measurements using multimeters fall short, capturing only single-point data that misses high-frequency variations and lacks absolute timing information necessary to align with process control conditions. For example, a single reading might fail to detect peak currents


that indicate anode irregularities. By contrast, time-series data offers a dynamic view of high-frequency fluctuations and enables advanced statistical processing, such as Fast Fourier Transforms (FFTs), to uncover patterns and anomalies obscured by static measurements. This detailed insight is derived from cutting-edge technologies like Fiber Optic Current Sensors (FOCS) [1] or the anode rod millivolt (mV) method, both of which deliver high-resolution current data.

Proposed Solution: To overcome these limitations, a sophisticated data logging system that integrates multiple capabilities is required. This system should record absolute date-time stamps and high-frequency time-series data, while providing a versatile display showcasing single-point values, peak measurements, time-series plots, and FFT analyses. By incorporating live cell operating conditions – such as cell voltage and historical sample data – this solution empowers operators with a comprehensive, real-time understanding of cell performance. Together, the data logger, recorded data, time-series insights, and statistical tools provide the foundation for precise, data-driven decision-making. Figure 1 shows a time-series plot of a potential anode spike, along with a per stall representation of the cells anode current distribution.

Figure 1. Anode current distribution. Left: User interface, Right: Rio Tinto CAT CD probe.

Careful consideration must be given to the interpretation of anode current take-up after anode setting, when evaluating anode setting accuracy, which is made possible via the absolute date-time recorded against the measurement. Early intervention optimizes anode profile and improves cell stability. Anode adjustment thresholds are a function of time, relative to when the anode was installed, commonly known as “anode setting”, and must be calibrated to a plant anode current take-up profile. In Figure 2, red dots indicate data from the secondary measurement device, offline from 0–16 hours.

Figure 2. Anode current (drop in stem in mV) from hour since anode setting.

- Continuous Development and Integration: Deliver the web-application via automated processes to ensure all end-users experience the latest version without site-support individual device management.

This framework addresses the technical difficulties of digitization, offering a scalable solution for aluminum smelters.

6. Conclusion

Digitizing manual measurement processes in aluminum reduction lines is essential for improving measurement quality and operational efficiency. By addressing challenges in anode current distribution, bath dip, and bath temperature measurements through automated systems, smelters can reduce errors and enhance process control. The proposed hybrid solution, combining ruggedized devices with Bluetooth LE and digital interfaces, provides a robust path forward.

7. References

1. Beijing SIO Technology Co., Ltd. (2025). FS210 Fiber Optic Current Clamp Meter. Available at: <http://sio-cn.com/212.html>, (Accessed: 1 June 2025).
2. Lazanas, A. C., & Prodromidis, M. I. (2023). Electrochemical Impedance Spectroscopy—A Tutorial, *ACS Measurement Science Au*, 3(3), 162–193, <https://doi.org/10.1021/acsmeasurescäu.2c00070> (Accessed: 1 June 2025).
3. NF Corporation. (n.d.). Measurement Lecture: Input Coupling. *NF Corporation Technical Information*, (Accessed:20 June 2025) <https://www.nfcorp.co.jp/english/techinfo/measurementlecture/vamp/lecture9.html>.